Abstract

The author presents uncoded and coded performance results for noncoherent M-ary frequency-shift keying (MFSK) and differentially coherent binary phase-shift keying (DPSK) in a slow nonselective Nakagami-m (1960) fading channel. He gives simple expressions for the asymptotic slopes of probability of bit error for large signal-to-noise ratio and shows that the effective order of diversity compared to an uncoded Rayleigh channel is the product of two parameters, one for the channel and one for the code. He also compares the uncoded Nakagami-m results to those of the Rician channel in order to show performance differences between these two generalized fading channel models. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call