Abstract

A cytosolic ATPase (an enzyme that dissociates clathrin from clathrin-coated vesicles in the presence of ATP) was isolated from developing pea (Pisum sativum L.) cotyledons using chromatography on ATP-agarose. After chromatography on phenyl Sepharose, the fraction with uncoating activity was enriched in a doublet of 70-kD peptides. Using chromatofocusing, it was possible to produce fractions enriched in the upper component of the doublet of 70-kD peptides; these fractions still retained ATP-dependent uncoating activity. In western blot analysis, antibodies against a member of the 70-kD family of heat-shock proteins interacted with the upper component of the doublet of the 70-kD peptides from the phenyl Sepharose-purified fractions. On the basis of these data, it appears that the uncoating ATPase may be a member of the 70-kD family of heat-shock proteins. The uncoating activity removed clathrin from both pea and bovine brain clathrin-coated vesicles. The uncoating ATPase from bovine brain also uncoated coated vesicles from peas. Pea clathrin-coated vesicles that were prepared by three different methods were uncoated to different extents by the plant uncoating ATPase. Different populations of clathrin-coated vesicles from the same preparation showed differential sensitivity to the uncoating ATPase. Limited proteolysis of the clathrin light chains in the protein coat abolished the susceptibility of the clathrin-coated vesicles to the uncoating ATPase. The properties of the uncoating ATPase isolated from developing pea cotyledons are similar to those of uncoating ATPases previously described from mammalian and yeast systems. It appears that despite dissimilarities in composition of the clathrin components of the vesicles from the respective sources, uncoating is achieved by a common mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.