Abstract

Sustainable and bioderived furanoate polyesters are emerging as promising substitutes for petrochemical-derived polyesters, which are mainly applied in packaging, textile, and biomedical fields. This work presents the successful production, for the first time, of electrospun nanofibrous mats based on two furan-based polyesters, i.e., poly(butylene 2,5-furanoate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF), which have very similar chemical structure but remarkably different physical and mechanical properties. The feasibility to produce nanofibrous mats of PBF and PPeF by electrospinning was systematically investigated, by optimizing (i) the solubility of the polymers in different solvent mixtures, (ii) the viscosity and concentration of the spinning dopes, evaluated through rheological measurements of the polymeric solutions, (iii) the spinning rate, and (iv) the applied voltage. A detailed morphological analysis of the resulting non-vowen mats, carried out through field-emission scanning electron microscopy (FESEM), allowed the screening of the best processing conditions for PBF and PPeF, in order to produce electrospun mats suitable for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.