Abstract
Due to the influence of factors such as camera angle and pose changes, some salient local features are often suppressed in person re-identification tasks. Moreover, many existing person re-identification methods do not consider the relation between features. To address these issues, this paper proposes two novel approaches: (1) To solve the problem of being confused and misidentified when local features of different individuals have similar attributes, we design a contextual relation network that focuses on establishing the relationship between local features and contextual features, so that all local features of the same person both contain contextual information. (2) To fully and correctly express key local features, we propose an uncertainty-guided joint attention module. The module focuses on the joint representation of individual pixels and local spatial features to enhance the credibility of local features. Finally, our method achieves competitive performance on four widely recognized datasets compared with state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.