Abstract

Wastewater treatment plants (WWTPs) have a significant role in urban systems’ serviceability. These infrastructures, especially in coastal regions, are vulnerable to flooding. To minimize vulnerability, a better understanding of flood risk must be realized. To quantify the extent of efforts for flood risk management, a unified index is needed for evaluating resiliency as a key concept in understanding vulnerability. Here, a framework is developed to evaluate the resiliency of WWTPs in coastal areas of New York City. An analysis of the current understanding of vulnerability is performed and a new perspective utilizing different components including resourcefulness, robustness, rapidity, and redundancy is presented to quantify resiliency using a multi-criteria decision-making (MCDM) technique. To investigate the effect of certain factors of WWTPs on resiliency, uncertainty analysis is also incorporated in developing the framework. As a result, rather than a single value, a range of variation for each WWTP's resiliency is obtained. Finally, improvement of WWTPs’ performance is investigated by allocating financial resources. The results show the significant value of quantifying and improving resiliency that could be used in development of investment strategies. Consideration of uncertainty in the analysis is of great worth to estimate the potential room for improvement of resiliency of individual WWTPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call