Abstract
Vast amounts of video data render manual video analysis useless while recent automatic video analytics techniques suffer from insufficient performance. To alleviate these issues, we present a scalable and reliable approach exploiting the visual analytics methodology. This involves the user in the iterative process of exploration, hypotheses generation, and their verification. Scalability is achieved by interactive filter definitions on trajectory features extracted by the automatic computer vision stage. We establish the interface between user and machine adopting the VideoPerpetuoGram (VPG) for visual- ization and enable users to provide filter-based relevance feedback. Additionally, users are supported in deriving hypotheses by context-sensitive statistical graphics. To allow for reliable decision making, we gather uncertainties introduced by the computer vision step, communicate these information to users through uncertainty visualization, and grant fuzzy hypothesis formulation to interact with the machine. Finally, we demonstrate the effectiveness of our approach by the video analysis mini challenge which was part of the IEEE Symposium on Visual Analytics Science and Technology 2009.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.