Abstract

When modeling human behavior in multi-player games, it is important to understand heterogeneous aspects of player behaviors. By leveraging experimental data and agent-based simulations, various data-driven modeling methods can be applied. This provides a great opportunity to quantify and visualize the uncertainty associated with these methods, allowing for a more comprehensive understanding of the individual and collective behaviors among players. For networked anagram games, player behaviors can be heterogeneous in terms of the number of words formed and the amount of cooperation among networked neighbors. Based on game data, these games can be modeled as discrete dynamical systems characterized by probabilistic state transitions. In this work, we present both Frequentist and Bayesian approaches for visualizing uncertainty in networked anagram games. These approaches help to elaborate how players individually and collectively form words by sharing letters with their neighbors in a network. Both approaches provide valuable insights into inferring the worst, average, and best player performance within and between behavioral clusters. Moreover, interesting contrasts between the Frequentist and Bayesian approaches can be observed. The knowledge and inferences gained from these approaches are incorporated into an agent-based simulation framework to further demonstrate model uncertainty and players’ heterogeneous behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call