Abstract

Reasonable partitioning is a critical issue for cyber-physical system (CPS) design. Traditional CPS partitioning methods run in a determined context and depend on the parameter pre-estimations, but they ignore the uncertainty of parameters and hardly consider reliability. The state-of-the-art work proposed an uncertainty theory based CPS partitioning method, which includes parameter uncertainty and reliability analysis, but it only considers linear uncertainty distributions for variables and ignores the uncertainty of reliability. In this paper, we propose an uncertainty theory based CPS partitioning method with uncertain reliability analysis. We convert the uncertain objective and constraint into determined forms; such conversion methods can be applied to all forms of uncertain variables, not just for linear. By applying uncertain reliability analysis in the uncertainty model, we for the first time include the uncertainty of reliability into the CPS partitioning, where the reliability enhancement algorithm is proposed. We study the performance of the reliability obtained through uncertain reliability analysis, and experimental results show that the system reliability with uncertainty does not change significantly with the growth of task module numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.