Abstract

Quantum mechanical uncertainty relations are fundamental consequences of the incompatible nature of noncommuting observables. In terms of the coherence measure based on the Wigner-Yanase skew information, we establish several uncertainty relations for coherence with respect to von Neumann measurements, mutually unbiased bases (MUBs), and general symmetric informationally complete positive operator valued measurements (SIC-POVMs), respectively. Since coherence is intimately connected with quantum uncertainties, the obtained uncertainty relations are of intrinsically quantum nature, in contrast to the conventional uncertainty relations expressed in terms of variance, which are of hybrid nature (mixing both classical and quantum uncertainties). From a dual viewpoint, we also derive some uncertainty relations for coherence of quantum states with respect to a fixed measurement. In particular, it is shown that if the density operators representing the quantum states do not commute, then there is no measurement (reference basis) such that the coherence of these states can be simultaneously small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.