Abstract

Abstract Besides the well-known Shannon entropy, there is a set of Shannon-like entropies which have applications in statistical and quantum physics. These entropies are functions of certain parameters and converge toward Shannon entropy when these parameters approach the value 1. We describe briefly the most important Shannon-like entropies and present their graphical representations. Their graphs look almost identical, though by superimposing them it appears that they are distinct and characteristic of each Shannon-like entropy. We try to formulate the alternative entropic uncertainty relations by means of the Shannon-like entropies and show that all of them equally well express the uncertainty principle of quantum physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.