Abstract

The conventional Fourier transform has a well-known uncertainty relation that is defined in terms of the first and second moments of both a function and its Fourier transform. It is also well known that Gaussian functions, when translated to an arbitrary centre and supplemented by a linear phase factor, provide a complete set of minimum uncertainty states (MUSs) that exactly achieves the lower bound set by this uncertainty relation. A similarly general set of MUSs and uncertainty relations are derived here for discrete and/or periodic generalizations of the Fourier transform, namely for the discrete Fourier transform and the Fourier series. These extensions require a modified definition for the width of a periodic distribution, and they lead to more complex uncertainty relations that turn out to depend on the centroid location and mean frequency of the distribution. The derivations lead to novel generalizations of Hermite–Gaussian functions and, like Gaussians, the MUSs can play a special role in a range of Fourier applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.