Abstract
ABSTRACT This study investigated the feasibility of reducing the uncertainty associated with fast-reactor-core design by sharing an experimental database between different fields (e.g. reactor physics and radiation shielding) using data assimilation techniques. As the first step in this study, we focused on the ORNL sodium shielding experiment and investigated the possibility of using the experimental data to reduce the uncertainty in sodium void reactivity (SVR), which is the most important safety parameter for sodium-cooled fast reactors. A sensitivity analysis based on the Generalized Perturbation Theory was performed for the sodium shielding experiment. Using the sensitivity coefficients evaluated here and those of the sodium void reactivity previously evaluated by the JAEA, we showed that sodium shielding experimental data can contribute to the uncertainty reduction of SVR by adopting the cross-section adjustment method. Based on this study, the uncertainty reduction effect is expected to be significant, especially for SVR dominated by neutron-leakage phenomena. Although new reactor physics experimental data on SVR may be difficult to obtain, the results of this study suggest that data from sodium shielding experiments can partially substitute for this role. This study demonstrated the value of the mutual use of integral experimental data in fast reactor designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.