Abstract

This paper develops a framework for propagation of uncertainties, governed by different probability distribution functions in a stochastic dynamical system. More specifically, it deals with nonlinear dynamical systems, wherein both the initial state and parametric uncertainty have been taken into consideration and their effects studied in the model response. A sampling-based nonintrusive approach using pseudospectral stochastic collocation is employed to obtain the coefficients required for the generalized polynomial chaos (gPC) expansion in this framework. The samples are generated based on the distribution of the uncertainties, which are basically the cubature nodes to solve expectation integrals. A mixture of one-dimensional Gaussian quadrature techniques in a sparse grid framework is used to produce the required samples to obtain the integrals. The familiar problem of degeneracy with high-order gPC expansions is illustrated and insights into mitigation of such behavior are presented. To illustrate the efficacy of the proposed approach, numerical examples of dynamic systems with state and parametric uncertainties are considered which include the simple linear harmonic oscillator system and a two-degree-of-freedom nonlinear aeroelastic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.