Abstract

The problem of multiphase phase flow in heterogeneous subsurface porous media is one involving many uncertainties. In particular, the permeability of the medium is an important aspect of the model that is inherently uncertain. Properly quantifying these uncertainties is essential in order to make reliable probabilistic-based predictions and future decisions. In this work, a measure-theoretic framework is employed to quantify uncertainties in a two-phase subsurface flow model in high-contrast media. Given uncertain saturation data from observation wells, the stochastic inverse problem is solved numerically in order to obtain a probability measure on the space of unknown permeability parameters characterizing the two-phase flow. As solving the stochastic inverse problem requires a number of forward model solves, we also incorporate the use of a conservative version of the generalized multiscale finite element method for added efficiency. The parameter-space probability measure is used in order to make predictions of saturation values where measurements are not available, and to validate the effectiveness of the proposed approach in the context of fine and coarse model solves. A number of numerical examples are offered to illustrate the measure-theoretic methodology for solving the stochastic inverse problem using both fine and coarse solution schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.