Abstract

Real-life epidemic situations are modeled using systems of differential equations (DEs) by considering deterministic parameters. However, in reality, the transmission parameters involved in such models experience a lot of variations and it is not possible to compute them exactly. In this paper, we apply B-spline wavelet-based generalized polynomial chaos (gPC) to analyze possible stochastic epidemic processes. A sensitivity analysis (SA) has been performed to investigate the behavior of randomness in a simple epidemic model. It has been analyzed that a linear B-spline wavelet basis shows accurate results by involving fewer polynomial chaos expansions (PCE) in comparison to cubic B-spline wavelets. We have carried out our developed method on two real outbreaks of diseases, firstly, influenza which affected the British boarding school for boys in North England in 1978, and secondly, Ebola in Liberia in 2014. Real data from the British Medical Journal (influenza) and World Health Organization (Ebola) has been incorporated into the Susceptible-Infected-Recovered (SIR) model. It has been observed that the numerical results obtained by the proposed method are quite satisfactory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.