Abstract

The simplified viscoelastic continuum damage model (S-VECD) has been widely accepted as a computationally efficient and a rigorous mechanistic model to predict the fatigue resistance of asphalt concrete. It operates in a deterministic framework, but in actual practice, there are multiple sources of uncertainty such as specimen preparation errors and measurement errors which need to be probabilistically characterized. In this study, a Bayesian inference-based Markov Chain Monte Carlo method is used to quantify the uncertainty in the S-VECD model. The dynamic modulus and cyclic fatigue test data from 32 specimens are used for parameter estimation and predictive envelope calculation of the dynamic modulus, damage characterization and failure criterion model. These parameter distributions are then propagated to quantify the uncertainty in fatigue prediction. The predictive envelope for each model is further used to analyze the decrease in variance with the increase in the number of replicates. Finally, the proposed methodology is implemented to compare three asphalt concrete mixtures from standard testing. The major findings of this study are: (1) the parameters in the dynamic modulus and damage characterization model have relatively strong correlation which indicates the necessity of Bayesian techniques; (2) the uncertainty of the damage characteristic curve for a single specimen propagated from parameter uncertainties of the dynamic modulus model is negligible compared to the difference in the replicates; (3) four replicates of the cyclic fatigue test are recommended considering the balance between the uncertainty of fatigue prediction and the testing efficiency; and (4) more replicates are needed to confidently detect the difference between different mixtures if their fatigue performance is close.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.