Abstract

Neural radiance fields and neural reflectance fields are novel deep learning methods for generating novel views of 3D scenes from 2D images. To extend the neural scene representation techniques to complex underwater environments, beyond neural reflectance fields underwater (BNU) was proposed, which considers the relighting conditions of on-aboard light sources by using neural reflectance fields, and approximates the attenuation and backscatter effects of water with an additional constant. Because the quality of the neural representation of underwater scenes is critical to downstream tasks such as marine surveying and mapping, the model reliability should be considered and evaluated. However, current neural reflectance models lack the ability of quantifying the uncertainty of underwater scenes that are not directly observed during training, which hinders their widespread use in the field of underwater unmanned autonomous navigation. To address this issue, we introduce an ensemble strategy to BNU that quantifies cognitive uncertainty in color space and unobserved regions with the expectation and variance of RGB values and termination probabilities along the ray. We also employ a regularization method to smooth the density of the underwater neural reflectance model. The effectiveness of the present method is demonstrated in numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call