Abstract

AbstractUncertainty quantification (UQ) in eruption source parameters, like tephra volume, plume height, and umbrella cloud radius, is a challenge for volcano scientists because tephra deposits are often sparsely sampled due to burial, erosion, and related factors. We find that UQ is improved by coupling an advection‐diffusion model with two Bayesian inversion approaches: (a) a robust but computationally expensive Generalized Likelihood Uncertainty Estimation algorithm, and (b) a more approximate but inexpensive parameter estimation algorithm combined with first‐order, second‐moment uncertainty estimation. We apply the two inversion methods to one sparsely sampled tephra fall unit from the 2070 BP El Misti (Peru) eruption and obtain: Tephra mass 0.78–1.4 × 1011 kg; umbrella cloud radius 4.5–16.5 km, and plume height 8–35 km (95% confidence intervals). These broad ranges demonstrate the significance of UQ for eruption classification based on mapped deposits, which has implications for hazard management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.