Abstract

Despite the great advances in modeling and simulation techniques, modelers and researchers acknowledge that models are simplified representations of reality and, hence, are subject to uncertainty and errors. Although models are inevitably uncertain, they can still be a valuable decision-support tool if the users are informed about the uncertainty in the results. The importance of model uncertainty identification and quantification becomes clear in this context, but there are numerous challenges that remain. In this work, an uncertainty analysis framework is proposed for simulation models. This framework comprises of the steps that must be performed to analyze the uncertainty in simulation models. Next, an application of the framework is discussed where entropy is used as a possible measure of input-uncertainty. By using this framework, stakeholders can be better advised regarding the applicability and uncertainty of the simulation model, which will lead to an appropriate adjustment of expectations on the model results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.