Abstract

We present a study of linear interpolation when applied to uncertain data. Linear interpolation is a key step for isosurface extraction algorithms, and the uncertainties in the data lead to non-linear variations in the geometry of the extracted isosurface. We present an approach for deriving the probability density function of a random variable modeling the positional uncertainty in the isosurface extraction. When the uncertainty is quantified by a uniform distribution, our approach provides a closed-form characterization of the mentioned random variable. This allows us to derive, in closed form, the expected value as well as the variance of the level-crossing position. While the former quantity is used for constructing a stable isosurface for uncertain data, the latter is used for visualizing the positional uncertainties in the expected isosurface level crossings on the underlying grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.