Abstract

Quantifying uncertainty during risk analysis has become an important part of effective decision-making and health risk assessment. However, most risk assessment studies struggle with uncertainty analysis and yet uncertainty with respect to model parameter values is of primary importance. Capturing uncertainty in risk assessment is vital in order to perform a sound risk analysis. In this paper, an approach to uncertainty analysis based on the fuzzy set theory and the Monte Carlo simulation is proposed. The question then arises as to how these two modes of representation of uncertainty can be combined for the purpose of estimating risk. The proposed method is applied to a propylene oxide polymerisation reactor. It takes into account both stochastic and epistemic uncertainties in the risk calculation. This study explores areas where random and fuzzy logic models may be applied to improve risk assessment in industrial plants with a dynamic system (change over time). It discusses the methodology and the process involved when using random and fuzzy logic systems for risk management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.