Abstract

In this paper, we developed a machine learning-based Bayesian approach to inversely quantify and reduce the uncertainties of multiphase computational fluid dynamics (MCFD) simulations for bubbly flows. The proposed approach is supported by high-resolution two-phase flow measurements, including those by double-sensor conductivity probes, high-speed imaging, and particle image velocimetry. Local distributions of key physical quantities of interest (QoIs), including the void fraction and phasic velocities, are obtained to support the Bayesian inference. In the process, the epistemic uncertainties of the closure relations are inversely quantified while the aleatory uncertainties from stochastic fluctuations of the system are evaluated based on experimental uncertainty analysis. The combined uncertainties are then propagated through the MCFD solver to obtain uncertainties of the QoIs, based on which probability-boxes are constructed for validation. The proposed approach relies on three machine learning methods: feedforward neural networks and principal component analysis for surrogate modeling, and Gaussian processes for model form uncertainty modeling. The whole process is implemented within the framework of an open-source deep learning library PyTorch with graphics processing unit (GPU) acceleration, thus ensuring the efficiency of the computation. The results demonstrate that with the support of high-resolution data, the uncertainties of MCFD simulations can be significantly reduced. The proposed approach has the potential for other applications that involve numerical models with empirical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.