Abstract

Abstract The temperature distribution and thermal Stresses induced by a temperature difference for steady state heat transfer in silicon carbide (SiC) ceramic tube heat exchanger with circular fins was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for the hoop stresses due to the structural and thermodynamic random variables. These results are used to identify the most critical design variables in order to optimize the design and make it cost effective. The probabilistic analysis leads to the selection of the appropriate measurements to be used in structural and heat transfer analysis and to the identification of both the most critical measurements and parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.