Abstract

Background: Clinical trial is a crucial step in the development of a new therapy (e.g., medication) and is remarkably expensive and time-consuming. Forecasting the approval of clinical trials accurately would enable us to circumvent trials destined to fail, thereby allowing us to allocate more resources to therapies with better chances. However, existing approval prediction algorithms did not quantify the uncertainty and provide interpretability, limiting their usage in real-world clinical trial management. Methods: This paper quantifies uncertainty and improves interpretability in clinical trial approval predictions. We devised a selective classification approach and integrated it with the Hierarchical Interaction Network, the state-of-the-art clinical trial prediction model. Selective classification, encompassing a spectrum of methods for uncertainty quantification, empowers the model to withhold decision-making in the face of samples marked by ambiguity or low confidence. This approach not only amplifies the accuracy of predictions for the instances it chooses to classify but also notably enhances the model's interpretability. Results: Comprehensive experiments demonstrate that incorporating uncertainty markedly enhances the model's performance. Specifically, the proposed method achieved 32.37%, 21.43%, and 13.27% relative improvement on area under the precision-recall curve over the base model (Hierarchical Interaction Network) in phase I, II, and III trial approval predictions, respectively. For phase III trials, our method reaches 0.9022 area under the precision-recall curve scores. In addition, we show a case study of interpretability that helps domain experts to understand model's outcome. The code is publicly available at https://github.com/Vincent-1125/Uncertainty-Quantification-on-Clinical-Trial-Outcome-Prediction. Conclusion: Our approach not only measures model uncertainty but also greatly improves interpretability and performance for clinical trial approval prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.