Abstract

Seismic fragility curves have been introduced as key components of seismic probabilistic risk assessment studies. They express the probability of failure of mechanical structures conditional to a seismic intensity measure and must take into account various sources of uncertainties, the so-called epistemic uncertainties (i.e., coming from the uncertainty on the mechanical parameters of the structure) and the aleatory uncertainties (i.e., coming from the randomness of the seismic ground motions). For simulation-based approaches we propose a methodology to build and calibrate a Gaussian process surrogate model to estimate a family of nonparametric seismic fragility curves for a mechanical structure by propagating both the surrogate model uncertainty and the epistemic ones. Gaussian processes have indeed the main advantage to propose both a predictor and an assessment of the uncertainty of its predictions. In addition, we extend this methodology to sensitivity analysis. Global sensitivity indices such as aggregated Sobol' indices and kernel-based indices are proposed to know how the uncertainty on the seismic fragility curves is apportioned according to each uncertain mechanical parameter. This comprehensive uncertainty quantification framework is finally applied to an industrial test case consisting of a part of a piping system of a pressurized water reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.