Abstract

Uncertainties are ubiquitous and unavoidable in process design and modeling. Because they can significantly affect the safety, reliability and economic decisions, it is important to quantify these uncertainties and reflect their propagation effect to process design. This paper proposes the application of generalized polynomial chaos (gPC)-based approach for uncertainty quantification and sensitivity analysis of complex chemical processes. The gPC approach approximates the dependence of a process state or output on the process inputs and parameters through expansion on an orthogonal polynomial basis. All statistical information of the interested quantity (output) can be obtained from the surrogate gPC model. The proposed methodology was compared with the traditional Monte-Carlo and Quasi Monte-Carlo sampling-based approaches to illustrate its advantages in terms of the computational efficiency. The result showed that the gPC method reduces computational effort for uncertainty quantification of complex chemical processes with an acceptable accuracy. Furthermore, Sobol’s sensitivity indices to identify influential random inputs can be obtained directly from the surrogated gPC model, which in turn further reduces the required simulations remarkably. The framework developed in this study can be usefully applied to the robust design of complex processes under uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.