Abstract
This work presents a sequential Monte Carlo-based integrated gas and power flow (IGPF) model to quantify how different sources of uncertainty propagate within the integrated gas and electricity network (IGEN). The uncertain input parameters, i.e. photovoltaic and wind generation, and electricity and heat demand are represented by weekly probabilistic time-series profiles. The time-series profiles of photovoltaic and wind generation are determined using respective Markov chains, whereas the fluctuations in time-series profiles of electricity and heat demand are modelled to comply with respective Gaussian distributions. The goodness-of-fit of these probabilistic time-series profiles to respective historical datasets is evaluated using the Kolmogorov-Smirnov test. Subsequently, the operation of gas and electricity networks, coupled through power-to-gas technology, is simulated using the sequential Monte Carlo-based IGPF model. The effectiveness of proposed approach is assessed through a case study in a localised energy network. Finally, four test-cases are designed to investigate the impact of increasing renewable penetration levels on uncertainty propagation in IGEN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.