Abstract

The Heisenberg uncertainty principle of harmonic analysis plays an important role in modern applied mathematical applications, signal processing and physics community. The generalizations and extensions of the classical uncertainty principle to the novel transforms are becoming one of the most hottest research topics recently. In this paper, we firstly obtain the uncertainty principle for Wigner-Ville distribution and ambiguity function associate with the linear canonical transform, and then then-dimensional cases are investigated in detail based on the proposed Heisenberg uncertainty principle of then-dimensional linear canonical transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.