Abstract

In this paper an uncertainty principle for Jacobi expansions is derived, as a generalization of that for ultraspherical expansions by Rösler and Voit. Indeed a stronger inequality is proved, which is new even for Fourier cosine or ultraspherical expansions. A complex base of exponential type on the torus {z∈ C: |z|=1} related to Jacobi polynomials is introduced, which are the eigenfunctions both of certain differential–difference operators of the first order and the second order. An uncertainty principle related to such exponential base is also proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.