Abstract
As a time‐shifted and frequency‐modulated version of the linear canonical transform (LCT), the offset linear canonical transform (OLCT) provides a more general framework of most existing linear integral transforms in signal processing and optics. To study simultaneous localization of a signal and its OLCT, the classical Heisenberg's uncertainty principle has been recently generalized for the OLCT. In this paper, we complement it by presenting another two uncertainty principles, ie, Donoho‐Stark's uncertainty principle and Amrein‐Berthier‐Benedicks's uncertainty principle, for the OLCT. Moreover, we generalize the short‐time LCT to the short‐time OLCT. We likewise present Lieb's uncertainty principle for the short‐time OLCT and give a lower bound for its essential support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.