Abstract
A class of new uncertainty principles is derived in the form of embeddings of Fourier–Lebesgue spaces into modulation spaces. These embeddings provide practical, sufficient conditions for a function to belong to a modulation space. Counterexamples based on the properties of Gabor expansions demonstrate that the embeddings are optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.