Abstract

Summary This paper investigates the effects of model structure and parameter equifinality on the uncertainty related to hydrological modelling in climate change impact studies. The study is conducted on a snow-dominated watershed located in the southern part of the province of Quebec (Canada). Hydrological model structure uncertainty is examined through the use of two very different simulation tools, one lumped conceptual model and one spatially-distributed physically-based model. Parameter equifinality is examined by performing multiple automatic calibrations with both hydrological models. The analysis is first carried out under recent past climate and then under modified climate conditions following two contrasted projections that are analysed separately. The delta change approach is used to build the two climate projections. Overall, this study reveals that the impact of hydrological model structure uncertainty is more significant than the effect of parameter uncertainty, under recent past climate as well as future climate conditions. Ultimately, the use of hydrological models with different levels of complexity should be considered as part of the global uncertainty related to hydrological model structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.