Abstract

This work capitalises on the morphodynamic study of a scraped artificial dune built on the sandy beach of Porto Garibaldi (Comacchio, Italy) as a barrier to protect the touristic facilities from sea storms during the winter season and contributes to understanding of the role of elevation data uncertainty and uniform thresholds for change detection (TCDs) on the interpretation of volume change estimations. This application relies on products derived from unmanned aerial vehicle (UAV) surveys and on the evaluation of the uncertainty associated with volume change estimations to interpret the case study morphodynamics under non-extreme sea and wind conditions. The analysis was performed by comparing UAV-derived digital elevation models (DEMs)—root mean squared error (RMSE) vs. global navigation satellite system (GNSS) < 0.05 m—and orthophotos, considering the significance of the identified changes by applying a set of TCDs. In this case, a threshold of ~0.15 m was able to detect most of the morphological variations. The set of TCD ≤ 0.15 m was considered to discuss the significance of minor changes and the uncertainty of volume change calculations. During the analysed period (21 December 2016–20 January 2017), water levels and waves affected the front of the artificial dune by eroding the berm area; winds remodelled the entire dune, moving the loose sand around the dune and further inland; sediment volumes mobilised by sea and wind forcing were comparable. This work suggests that UAV-derived coastal morphological variations should be interpreted by integrating: (i) a set of uniform thresholds to detect significant changes; (ii) the uncertainty generated by the propagation of the original uncertainty of the elevation products; (iii) the characteristics of the morphodynamic drivers evaluated by adopting uncertainty-aware approaches. Thus, the contribution of subtle morphological changes—magnitudes comparable with the instrumental accuracy and/or the assessed propagated uncertainty—can be properly accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.