Abstract

This paper presents a novel control strategy based on an uncertainty estimator for a class of fractional-order nonlinear systems characterized by a polynomial input. The proposed strategy allows the system to be controlled without resorting to transformations or approximate linearization. This is accomplished by using a fractional-order sliding-mode observer, whose task is to estimate certain portions of the state of the nonlinear system of a non-integer order, thus allowing the control law to counteract these elements to steer the system towards a desired behavior. To validate the performance of the proposed strategy, it was implemented, both in simulation and experimentally, to regulate the temperature of the cold side of a thermoelectric module fed by a DC/DC electronic power converter of the step-down type, a system that is known to have a nonlinear polynomial-type control input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call