Abstract
Rough set theory is a powerful mathematical tool to deal with uncertainty in data analysis. Interval-valued information systems are generalized models of single-valued information systems. Recently, uncertainty measures for complete interval-valued information systems or complete interval-valued decision systems have been developed. However, there are few studies on uncertainty measurements for incomplete interval-valued information systems. This paper aims to investigate the uncertainty measures in incomplete interval-valued information systems based on an α-weak similarity. Firstly, the maximum and the minimum similarity degrees are defined when interval-values information systems are incomplete based on the similarity relation. The concept of α-weak similarity relation is also defined. Secondly, the rough set model is constructed. Based on this model, accuracy, roughness and approximation accuracy are given to evaluate the uncertainty in incomplete interval-valued information systems. Furthermore, experimental analysis shows the effectiveness of the constructed uncertainty measures for incomplete interval-valued information systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.