Abstract

Proper assessment of ecological data must consider uncertainty. However, reported estimation of uncertainty in calculated values of nutrient spiraling indices is rare. Interpretations based on single values of spiraling indices, may therefore be unwittingly flawed. We investigated the sources of analytical uncertainty in the nutrient concentrations used to calculate two spiraling indices, uptake length (S w ) and uptake velocity (V f ), and used Monte Carlo Simulation (MCS) to estimate the resultant uncertainty in index values. We also examined the effect of the level of nutrient enrichment on the magnitude of index uncertainty. Outcomes under high and low nutrient uptake capacity were compared by performing nutrient addition experiments in two streams with contrasting ambient nutrient concentrations. We found that small differences (or uncertainties) in the average plateau nutrient concentration resulted in large uncertainties in spiraling indices. The uncertainty resulted from a combination of small differences in nutrient concentrations between upstream and downstream stations (particularly for the low uptake case), the low nutrient concentration added into the stream, and the sample matrix and storage. The stream with low nutrient uptake capacity had larger relative uncertainties in S w than when the nutrient uptake capacity was high. The presence of such errors demands that S w and V f values should be reported with uncertainty, rather than the normal practice of a single calculated value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call