Abstract
Land value patterns show very distinct spatial associations with accessibility to urban centralities and physical factors in a territory. However, predictions based on models of this structure can be highly uncertain, as the underlying data also may show clustering (thus allowing for better predictions in more densely sampled areas). An assessment of this uncertainty for land value extrapolations in the the San José Metropolitan Region of Costa Rica is presented, via conditional Gaussian simulation, and the determinants of this uncertainty were explored, to find spatial strengths and weaknesses in the modeling efforts. The E-Type prediction from the conditional Gaussian simulation was found to marginally improve on ordinary kriging methods and it also provided explicit uncertainty patterns, which are the inverse of the land value prediction. The estimated uncertainty was found to decrease with characteristics that identify suitability for urban land use (and thus higher land values).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.