Abstract
Despite significant recent developments in computational power and distributed hydrologic modeling, the issue of how to adequately address the uncertainty associated with hydrological predictions remains a critical and challenging one. This issue needs to be properly addressed for hydrological modeling to realize its maximum practical potential in environmental decision‐making processes. Arguably, the key to properly addressing hydrologic uncertainty is to understand, quantify, and reduce uncertainty involved in hydrologic modeling in a cohesive, systematic manner. Although general principles and techniques on addressing hydrologic uncertainty are emerging in the literature, there exist no well‐accepted guidelines about how to actually implement these principles and techniques in various hydrologic settings in an integrated manner. This paper reviews, in relevant detail, the common data assimilation methods that have been used in hydrologic modeling to address problems of state estimation, parameter estimation, and system identification. In particular, the paper discusses concepts, methods, and issues involved in hydrologic data assimilation from a systems perspective. An integrated hierarchical framework is proposed for pursuing hydrologic data assimilation in several progressive steps to maximally reduce uncertainty in hydrologic predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.