Abstract

Understanding proteins, their structures, functions, mutual interactions, activity in cellular reactions, interactions with drugs, and expression in body cells is a key to efficient medical diagnosis, drug production, and treatment of patients. Machine learning and data exploration methods supported by many-valued logics allow to grasp the imprecision and uncertainties that naturally occur in proteins and other biomolecules. Many-valued logics, like Łukasiewicz logic or fuzzy logic, are non-classical logics that do not restrict the number of truth values to only two values of true or false, but they allow for a larger set of truth degrees. In this paper, we briefly review the use of many-valued logics, especially the fuzzy logic, in bioinformatics. Then, we focus on protein bioinformatics, and present selected applications of many-valued logics in the analysis of complex protein structures, including; (1) potential-based protein similarity searching, (2) matching proteins on the basis of secondary structures, (3) 3D protein structure alignment, (4) prediction of intrinsically disordered proteins, and (5) fuzzy querying in large collections of Big macromolecular Data. Results of presented studies show that the utilization of many-valued logics can enrich the investigations of protein molecules, in which uncertainty and imprecision are prevalent problems. The paper discusses all observed benefits brought by the application of many-valued logics in investigations related to selected protein analyzes carried out by the author.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call