Abstract

Single image de-raining is an extremely challenging problem since the rainy image may contain rain streaks which may vary in size, direction and density. Previous approaches have attempted to address this problem by leveraging some prior information to remove rain streaks from a single image. One of the major limitations of these approaches is that they do not consider the location information of rain drops in the image. The proposed Uncertainty guided Multi-scale Residual Learning (UMRL) network attempts to address this issue by learning the rain content at different scales and using them to estimate the final de-rained output. In addition, we introduce a technique which guides the network to learn the network weights based on the confidence measure about the estimate. Furthermore, we introduce a new training and testing procedure based on the notion of cycle spinning to improve the final de-raining performance. Extensive experiments on synthetic and real datasets to demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.