Abstract

Additively manufactured (AM) workpieces, which have been produced by means of laser beam melting (LBM), tend to show quality relevant pores and cracks on the inside. Quality assurance on these parts may be conducted using x-ray Computed Tomography (CT), as CT is able to spot pores and cracks in the entire volume of a specimen. However, the uncertainty of detection of such cavities in a CT measurement is unknown. To tackle this shortcoming, different authors have compared metallographic cross sections to CT images. None of these investigations have compared the cross section’s plane directly to the corresponding plane of the CT’s 3D voxel image, without using features of the CT image itself, though. This paper introduces a special artifact as reference standard, whose pyramid like form allows a direct comparison of a metallographic cross section and the corresponding plane in a CT scan. The shape of the test object allows to calculate the parameters of the plane equation of the metallographic cross section in a coordinate system fixed to the test object. The plane equation is used to identify and investigate the corresponding plane in the CT scan. By comparing this artificial cross section from the CT scan with the cross section from the metallography specimen, the CT’s performance for detecting pores is assessed. As a result, a general method to test any CT’s capability to detect pores in an AM part is given by using cross sections of test objects with the proposed pyramid like form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call