Abstract

Ecosystem based water quality models are important tools for prognostic site assessment and evaluation of ecosystem-performance of marine fish farms. We present the development and application of a comprehensive Fish Culture Zone Water Quality Model using continuous bi-weekly field data over a six-year period (2012-2017). The model simulates five interacting subsystems: phytoplankton, phosphorus and nitrogen cycles, and the dissolved oxygen (DO) and particulate organic carbon balance. The application of the model to two fish culture zones in Hong Kong shows the model captures the trends of nutrient and DO variation and the performance in quantitative prediction of algal biomass is challenging. The effect of errors in the specification of primary model inputs are evaluated using dimensionless sensitivity coefficients based on First Order Variance Analysis reveals the relative importance of fish stock (loading), physical size (volume), tidal flushing rate and boundary conditions in the prediction of key water quality variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.