Abstract

This paper is the second (Part II) in a series of two papers (Part I and Part II). Part I has quantitatively discussed the fundamental limitations of the t-interval method for uncertainty estimation with a small number of measurements. This paper (Part II) reveals that the t-interval is an ‘exact’ answer to a wrong question; it is actually misused in uncertainty estimation. This paper proposes a redefinition of uncertainty, based on the classical theory of errors and the theory of point estimation, and a modification of the conventional approach to estimating measurement uncertainty. It also presents an asymptotic procedure for estimating the z-interval. The proposed modification is to replace the t-based uncertainty with an uncertainty estimator (mean- or median-unbiased). The uncertainty estimator method is an approximate answer to the right question to uncertainty estimation. The modified approach provides realistic estimates of uncertainty, regardless of whether the population standard deviation is known or unknown, or if the sample size is small or large. As an application example of the modified approach, this paper presents a resolution to the Du–Yang paradox (i.e. Paradox 2), one of the three paradoxes caused by the misuse of the t-interval in uncertainty estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.