Abstract
This paper deals with the uncertainty in digital measurement systems designed for power quality applications. The main goal of this work is to evaluate such uncertainty by means of a Monte Carlo method recently proposed in the literature. The accuracy of the measurement result obtained with a DSP‐based instrument for power quality metering depends on the behavior of the devices located in both the conditioning block and A/D conversion stage: it is thus necessary to consider the uncertainties introduced by each component of the system and the propagation of their effects through the measurement chain. Here, the uncertainty is estimated starting from the technical specifications provided by the manufacturers of these devices. Experimental results are reported to show the importance of some concerns about the practical implementation of the proposed methodology in a real instrument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.