Abstract
A recent cycle of a General Electric boiling water reactor performed two beginning-of-cycle local cold criticals. The eigenvalues estimated by the core simulator were 0.99826 and 1.00610. The large spread in them (= 0.00784) is a source of concern, and it is studied here. An analysis process is developed using statistical techniques, where first a transfer function relating the core observable Y (eigenvalue) to various factors (X’s) is established. Engineering judgment is used to recognize the best candidates for X’s. They are identified as power-weighted assembly k∞’s of selected assemblies around the withdrawn rods. These are a small subset of many X’s that could potentially influence Y. However, the intention here is not to do a comprehensive study by accounting for all the X’s. Rather, the scope is to demonstrate that the process developed is reasonable and to show its applicability to performing detailed studies. Variability in X’s is obtained by perturbing nodal k∞’s since they directly influence the buckling term in the quasi-two-group diffusion equation model of the core simulator. Any perturbations introduced in them are bounded by standard well-established uncertainties. The resulting perturbations in the X’s may not necessarily be directly correlated to physical attributes, but they encompass numerous biases and uncertainties credited to input and modeling uncertainties. The “vital few” from the “unimportant many” X’s are determined, and then they are subgrouped according to assembly type, location, exposure, and control rod insertion. The goal is to study how the subgroups influence Y in order to have a better understanding of the variability observed in it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.