Abstract
The use of feature enhancement techniques to obtain estimates of the clean parameters is a common approach for robust automatic speech recognition (ASR). However, the decoding algorithm typically ignores how accurate these estimates are. Uncertainty decoding methods incorporate this type of information. In this paper, we develop a formulation of the uncertainty decoding paradigm for Frequency Filtered (FF) parameters using spectral subtraction as a feature enhancement method. Additionally, we show that the uncertainty decoding method for FF parameters admits a simple interpretation as a spectral weighting method that assigns more importance to the most reliable spectral components. Furthermore, we suggest combining this method with SSBD-HMM (Spectral Subtraction and Bounded Distance HMM), one recently proposed technique that is able to compensate for the effects of features that are highly contaminated (outliers). This combination pursues two objectives: to improve the results achieved by uncertainty decoding methods and to determine which part of the improvements is due to compensating for the effects of outliers and which part is due to compensating for other less deteriorated features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.