Abstract

The remaining useful life (RUL) of bearings based on deep learning methods has been increasingly used. However, there are still two obstacles in deep learning RUL prediction: (1) the training process of the deep learning model requires enough data, but run-to-failure data are limited in the actual industry; (2) the mutual dependence between RUL predictions at different time instants are commonly ignored in existing RUL prediction methods. To overcome these problems, a RUL prediction method combining the data augmentation strategy and Wiener–LSTM network is proposed. First, the Sobol sampling strategy is implemented to augment run-to-failure data based on the degradation model. Then, the Wiener–LSTM model is developed for the RUL prediction of bearings. Different from the existing LSTM-based bearing RUL methods, the Wiener–LSTM model utilizes the Wiener process to represent the mutual dependence between the predicted RUL results at different time instants and embeds the Wiener process into the LSTM to control the uncertainty of the result. A joint optimization strategy is applied in the construction of the loss function. The efficacy and superiority of the proposed method are verified on a rolling bearing dataset obtained from the PRONOSTIA platform. Compared with the conventional bearing RUL prediction methods, the proposed method can effectively augment the bearing run-to-failure data and, thus, improve the prediction results. Meanwhile, fluctuations of the bearing RUL prediction result are significantly suppressed by the proposed method, and the prediction errors of the proposed method are much lower than other comparative methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.