Abstract

A flow injection manifold incorporating a solid phase chelating resin (Toyopearl AF-Chelate-650) is reported for the preconcentration of dissolved metals from seawater, with a focus on investigating the effect of the loading pH, wash solution composition and wash time. Cobalt, iron, lead and vanadium have been used as target analytes with contrasting oceanographic behaviour. Quadrupole ICP–MS has been used for detection to make the approach accessible to most laboratories and a collision/reaction cell has been incorporated to minimise polyatomic interferences. Results for the seawater CRM NASS-6 and two GEOTRACES reference materials were in good agreement with the certified/consensus values, demonstrating the suitability of the approach for the determination of trace metals in seawater. The experimental design used allowed a thorough investigation of the uncertainty contribution from each method parameter to the overall expanded uncertainty of the measurement. The results showed that the parameters making the largest contributions were the precision of the peak area measurement and the uncertainty associated with the slope of the calibration curve. Therefore, these are the critical parameters that should be targeted in order to reduce the overall measurement uncertainty. For iron, the wash blank also gave a measureable contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.