Abstract

This work proposes a novel event-triggered exponential supertwisting algorithm (ESTA) for path tracking of a mobile robot. The proposed work is divided into three parts. In the first part, a fractional-order sliding surface-based exponential supertwisting event-triggered controller has been proposed. Fractional-order sliding surface improves the transient response, and the exponential supertwisting reaching law reduces the reaching phase time and eliminates the chattering. The event-triggering condition is derived using the Lipschitz method for minimum actuator utilization, and the interexecution time between two events is derived. In the second part, a fault estimator is designed to estimate the actuator fault using the Lyapunov stability theory. Furthermore, it is shown that in the presence of matched and unmatched uncertainty, event-trigger-based controller performance degrades. Hence, in the third part, an integral sliding-mode controller (ISMC) has been clubbed with the event-trigger ESTA for filtering of the uncertainties. It is also shown that when fault estimator-based ESTA is clubbed with ISMC, then the robustness of the controller increases, and the tracking performance improves. This novel technique is robust toward uncertainty and fault, offers finite-time convergence, reduces chattering, and offers minimum resource utilization. Simulations and experimental studies are carried out to validate the advantages of the proposed controller over the existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.