Abstract
Predicting chemical reaction yields is pivotal for efficient chemical synthesis, an area that focuses on the creation of novel compounds for diverse uses. Yield prediction demands accurate representations of reactions for forecasting practical transformation rates. Yet, the uncertainty issues broadcasting in real-world situations prohibit current models to excel in this task owing to the high sensitivity of yield activities and the uncertainty in yield measurements. Existing models often utilize single-modal feature representations, such as molecular fingerprints, SMILES sequences, or molecular graphs, which is not sufficient to capture the complex interactions and dynamic behavior of molecules in reactions. In this paper, we present an advanced Uncertainty-Aware Multimodal model (UAM) to tackle these challenges. Our approach seamlessly integrates data sources from multiple modalities by encompassing sequence representations, molecular graphs, and expert-defined chemical reaction features for a comprehensive representation of reactions. Additionally, we address both the model and data-based uncertainty, refining the model's predictive capability. Extensive experiments on three datasets, including two high throughput experiment (HTE) datasets and one chemist-constructed Amide coupling reaction dataset, demonstrate that UAM outperforms the state-of-the-art methods. The code and used datasets are available at https://github.com/jychen229/Multimodal-reaction-yield-prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.